• Facebook
  • Yahoo
  • Twitter
  • Google
  • Live
  • Facebook
  • Yahoo
  • Twitter
  • Google
  • Live

Optical network shapes pulses of light

7 Jan | By Maxim Batalin
Optical network shapes pulses of light
Artistic depiction of an optical diffractive network that shapes pulses of light. Inset: A 3D-printed optical diffractive network that is used to engineer THz pulses.

A team of UCLA engineers and researchers has developed a new method to shape light pulses by creating physical networks that are composed specially engineered layers. These layers are designed through deep learning and then fabricated using 3D printing and stacked together, one following another, forming an optical network that is capable of performing various computational tasks using optical waves and diffraction of light. Earlier studies demonstrated all-optical classification and recognition of images using these deep learning-designed diffractive networks.

In this recent work, published in Nature Communications, UCLA researchers created diffractive optical networks that can take an input light pulse and pass it through specially engineered layers to shape the output pulse that is leaving the optical network into a desired temporal waveform. This pulse shaping network was demonstrated in terahertz part of the electromagnetic spectrum for the first time, showing the synthesis of various forms of terahertz pulses. By precisely controlling both the phase and amplitude of a broadband input pulse over a continuum of wavelengths, the generation of different pulse shapes with various pulse-widths was demonstrated.

This pulse shaping approach is composed of passive diffractive layers that do not consume power and can be used to directly engineer terahertz pulses generated through, for example, quantum cascade lasers, solid-state circuits and particle accelerators. Another major advantage of this deep learning-based approach is that it is versatile and can be easily adapted to engineer terahertz pulses irrespective of their polarization state, beam quality or aberrations.

Professor Aydogan Ozcan, Volgenau Chair for Engineering Innovation and a Chancellor’s Professor of electrical and computer engineering at UCLA, emphasized that this framework can be applied to other parts of electromagnetic spectrum to shape optical pulses and will find broad applications in various applications that light pulses are being used, such as in ultra-fast imaging, spectroscopy and optical telecommunications. Diffractive optical networks open up a plethora of new design opportunities, especially in terahertz part of the spectrum, where existing devices and components have some important limitations, added Professor Mona Jarrahi of UCLA.

The study’s authors, all from UCLA School of Engineering, are graduate students Muhammed Veli, Deniz Mengu, Yi Luo and Jingxi Li; postdoctoral researcher Nezih Yardimci; adjunct professor Yair Rivenson; and professors Aydogan Ozcan and Mona Jarrahi — all of whom are members of UCLA’s electrical and computer engineering department. Ozcan also has UCLA faculty appointments in bioengineering and is the associate director of the UCLA California NanoSystems Institute (CNSI) and an HHMI professor.


Reference: https://www.nature.com/articles/s41467-020-20268-z

Area of application: Dentistry , Dermatology, Gastroenterology, Gynecology and Obstetrics, Human genetics, Infectious disease and antibiotic resistance, Internal medicine and general medicine, Laboratory and environmental medicine, Neurology, Neurosurgery, Oncology, Ophthalmology Diagnostics and Imaging, Otorhinolaryngology, Pathology, Pediatrics and Neonatology, Pharmacology, Pulmonology, Reproductive Medicine, Rheumatology, Surgery, Urology and Nephrology, Medicine, other applications, Cellular biotechnology, Drug delivery, Molecular diagnostics, Pharmaceuticals (development, production, monitoring), Therapeutics, Tissue enginieering, Health, other applications, Biochemistry, Cell Biology, Developmental biology, Ecology, Genetics, Human biology, Microbiology, Molecular biology, Physiology, Biology, other applications, Air and water monitoring, Food and animal-feed production, Food safety, Environment and nutrition, other applications, Defense technology, Explosives detection, Personal security, Traffic/Transport, Security, other applications, Other Areas of Application
Methods and Techniques: Endoscopy, General microscopy (white light, confocal, bright field, dark field, phase contrast, DIC etc.), Linear and non-linear fluorescence imaging (confocal LSM, multi-photon, STED, PALM, STORM, SIM, FRET, FRAP, FLIM, etc.), Linear and non-linear vibrational microscopy / imaging (IR, confocal Raman, CARS, SRS etc.), Near-field microscopy (SNOM, AFM, STM, etc.), Optical Coherence Tomography (OCT ), Operating microscopy, Photoacoustic imaging (PAI, MSOT), Polarimetry, Probe and sensor development, Terahertz imaging, Thermography, Microscopy/Imaging, other methods and techniques, ATR / FTIR Spectroscopy, Coherent Back Scattering CBS, Diffuse Optics, Dynamic Light Scattering DLS, Ellipsometry, Fluorescence spectroscopy, Photoluminescence, Reflectance, Terahertz spectroscopy, UV / VIS spectroscopy, Vibrational spectroscopy (Raman, Infrared), Spectroscopy, other methods and techniques, Biochips, Bioassays, High-throughput screening, Micro-array technologies, Point-of-care, other methods and techniques, Big data, Chemometrics, Image analysis, Image processing, Digitalization, other methods and techniques, CCD and CMOS sensors and cameras, Fiber optical illumination, Functionalized fibres, Implant manufacturing, Laser , Laser-induced microdissection and catapulting of cells, Laser micromanipulation, Microstructure Fibers, Objectives, Optical clearing, Optical tweezers, Tissue separation / laser scalpels, Enabling Technologies, other methods and techniques, Other Methods and Techniques

Share on Biophotonics.World:  
0
Share on Social Media:

Comments:

No comments
You need to sign in to comment

Related Articles

Categories

Most Viewed

Most Discussed